A paradox for an accelerating frame of reference

Karl De Paepe
Box 1174 Virden MB
R0M 2C0 Canada
Email: k.depaep@utoronto.ca

Abstract: Do clocks equidistant from the axis of rotation of a constant angular accelerating frame of reference go at the same rate?

Résumé: Plusières horloges placées à distances égales de l’axe de rotation d’un référentiel en accélération angulaire constante ont-elles la même cadence?

Key words: Rotating; Acceleration; Potential
Let \mathcal{F} be an inertial frame of reference with coordinates x, y, z, t and \mathcal{F}' a frame of reference with coordinates x', y', z', t' rotating about the z axis. \mathcal{F} and \mathcal{F}' having common origins. Let θ be the angle between the x and x' axis. On the $x'y'$ plane of \mathcal{F}' let there be a regular polygon centred at the origin with side s and radius R of circumscribed circle. Let V'_1 be a vertex of the polygon and let V'_2 be the first vertex counterclockwise from V'_1. Let $\ddot{\theta} > 0$ be constant and initially $\dot{\theta} = 0$. For a small interval of time and $R \gg s$ with respect to \mathcal{F} the vertices V'_1 and V'_2 will initially be at rest and will be approximately moving along a straight line with constant acceleration $\ddot{\theta}R$. Let Δt be a small interval of time measured by a clock at rest with respect to \mathcal{F}. Let $\Delta t'_2$ be this time interval measured with respect to \mathcal{F}' by a clock at rest at V'_2 and define similarly $\Delta t'_1$. Using the equivalence principle the ratio of these intervals is approximately [1], p.80,

$$\frac{\Delta t'_2}{\Delta t'_1} = 1 - \frac{\Delta \phi}{c^2} = 1 - \frac{\ddot{\theta}Rs}{c^2} \quad (1)$$

where $\Delta \phi$ is the difference in potential between V'_2 and V'_1 so $\Delta t'_2 < \Delta t'_1$ and at the nth vertex $\Delta t'_{n+1} < \Delta t'_n$. If there are N vertices then at the Nth vertex $\Delta t'_1 < \Delta t'_N$. Consequently

$$\Delta t'_1 < \Delta t'_N < \Delta t'_{N-1} < \cdots < \Delta t'_2 < \Delta t'_1 \quad (2)$$

which does not hold.

References