Two particles and gravitation

Karl De Paepe*

Abstract

We consider a particle B moving towards a particle A along a fixed line containing A. We show the force between A and B is not described by the law of universal gravitation. We also show gravitation must depend on another constant besides c and G.

1 Introduction

Units are chosen so that $c = G = 1$. Let x, y, z be coordinates of space. Let A be a particle on the x axis and B be a particle moving from positive x infinity along the x axis towards A. When B is at infinity let A be at rest with total energy M and B be at rest with total energy m. Gravitational attraction between A and B causes B to move towards A.

2 Energy gain function

Let the energy gain function $W(M, m, R, h)$ be the amount of energy B gains as it moves from a separation distance of $R + h$ to a separation distance of R between the x values of A and B. Define

$$L(M, h) = W\left(M, \frac{M}{N}, NM, h\right)$$ (1)

where N is a large natural number. Using the law of universal gravitation, the amount of energy B gains on moving from $R + h$ to R for small $\frac{m}{M}$ and

* k.depaepe@utoronto.ca
\(\frac{M}{R} \) is approximately \(\frac{Mnh}{R(R+h)} \). Consequently

\[
L(M, h) = \frac{Mh}{N^2(NM + h)} Q(M, h)
\]

(2)

where the dimensionless function \(Q(M, h) \) is approximately one.

3 Contradictions

The function \(W \) has a value when \(M = h = 0 \) so the left hand side (2) is defined for \(M = h = 0 \) but the right hand side is not which is a contradiction. The function \(L \) must have a different form than (2). Consequently the force between \(A \) and \(B \) is not approximated by the law of universal gravitation.

Let us now begin with a theory of gravitation having only constants \(c \) and \(G \) with dimension. An example is general relativity. If \(Mh = 0 \) particle \(B \) does not gain any energy as a result \(L(M, 0) = L(0, h) = 0 \). Also \(L \) has dimensions of energy and since \(c \) and \(G \) are the only constants with dimension we must have \(L = 0 \) which is a contradiction.

4 Conclusion

We showed the force between \(A \) and \(B \) is not determined by the law of universal gravitation. We also showed a theory of gravitation must depend another constant besides \(c \) and \(G \). It follows that general relativity does not describe classical gravity.